Skip to main content
Microsoft
Source
Source
  • Home
    • Company News
    • Official Microsoft Blog
    • Microsoft On The Issues
    • Europe
    • Asia
    • Latin America
    • India
    • UK
  • AI
  • Innovation
  • Digital Transformation
  • Diversity & Inclusion
  • Sustainability
  • Work & Life
    • Global

      • Microsoft 365
      • Teams
      • Windows
      • Surface
      • Xbox
      • Deals
      • Small Business
      • Support
    • Software
      • Windows Apps
      • AI
      • Outlook
      • OneDrive
      • Microsoft Teams
      • OneNote
      • Microsoft Edge
      • Skype
    • PCs & Devices
      • Computers
      • Shop Xbox
      • Accessories
      • VR & mixed reality
      • Phones
    • Entertainment
      • Xbox Game Pass Ultimate
      • PC Game Pass
      • Xbox games
      • PC games
      • Windows digital games
      • Movies & TV
    • Business
      • Microsoft Cloud
      • Microsoft Security
      • Dynamics 365
      • Microsoft 365 for business
      • Microsoft Power Platform
      • Windows 365
      • Microsoft Industry
      • Small Business
    • Developer & IT
      • Azure
      • Developer Center
      • Documentation
      • Microsoft Learn
      • Microsoft Tech Community
      • Azure Marketplace
      • AppSource
      • Visual Studio
    • Other
      • Microsoft Rewards
      • Free downloads & security
      • Education
      • Virtual workshops and training
      • Gift cards
      • Students and parents deals
      • Licensing
      • Microsoft Experience Center
    • View Sitemap
    • No results
    0 Cart 0 items in shopping cart
    Sign in
    Source
    Category: Sustainability

    Microsoft finds underwater datacenters are reliable, practical and use energy sustainably

    Written by
    • John Roach
    Published
    September 14, 2020

    Earlier this summer, marine specialists reeled up a shipping-container-size datacenter coated in algae, barnacles and sea anemones from the seafloor off Scotland’s Orkney Islands.

    The retrieval launched the final phase of a years-long effort that proved the concept of underwater datacenters is feasible, as well as logistically, environmentally and economically practical.

    Microsoft’s Project Natick team deployed the Northern Isles datacenter 117 feet deep to the seafloor in spring 2018. For the next two years, team members tested and monitored the performance and reliability of the datacenter’s servers.

    The team hypothesized that a sealed container on the ocean floor could provide ways to improve the overall reliability of datacenters. On land, corrosion from oxygen and humidity, temperature fluctuations and bumps and jostles from people who replace broken components are all variables that can contribute to equipment failure.

    Under the sea, Microsoft tests a datacenter that’s quick to deploy, could provide internet connectivity for years

    • Category: Innovation

    The Northern Isles deployment confirmed their hypothesis, which could have implications for datacenters on land.

    Lessons learned from Project Natick also are informing Microsoft’s datacenter sustainability strategy around energy, waste and water, said Ben Cutler, a project manager in Microsoft’s Special Projects research group who leads Project Natick.

    What’s more, he added, the proven reliability of underwater datacenters has prompted discussions with a Microsoft team in Azure that’s looking to serve customers who need to deploy and operate tactical and critical datacenters anywhere in the world.

    “We are populating the globe with edge devices, large and small,” said William Chappell, vice president of mission systems for Azure. “To learn how to make datacenters reliable enough not to need human touch is a dream of ours.”

    Proof of concept

    The underwater datacenter concept splashed onto the scene at Microsoft in 2014 during ThinkWeek, an event that gathers employees to share out-of-the-box ideas. The concept was considered a potential way to provide lightning-quick cloud services to coastal populations and save energy.

    More than half the world’s population lives within 120 miles of the coast. By putting datacenters underwater near coastal cities, data would have a short distance to travel, leading to fast and smooth web surfing, video streaming and game playing.

    The consistently cool subsurface seas also allow for energy-efficient datacenter designs. For example, they can leverage heat-exchange plumbing such as that found on submarines.

    Microsoft’s Project Natick team proved the underwater datacenter concept was feasible during a 105-day deployment in the Pacific Ocean in 2015. Phase II of the project included contracting with marine specialists in logistics, ship building and renewable energy to show that the concept is also practical.

    “We are now at the point of trying to harness what we have done as opposed to feeling the need to go and prove out some more,” Cutler said. “We have done what we need to do. Natick is a key building block for the company to use if it is appropriate.”

    A retrieving vessel hoisting up the Northern Isles datacenter, with the Orkney Islands in the background
    1 of 14Microsoft’s Project Natick team used a gantry barge to retrieve the Northern Isles datacenter from the seafloor off Scotland’s Orkney Islands. A coat of algae, barnacles and sea anemones grew on the datacenter during its two-year deployment. Photo by Simon Douglas.
    The Northern Isles datacenter sitting halfway up out of the water
    2 of 14The Northern Isles datacenter was retrieved from the seafloor off Scotland’s Orkney Islands and towed partially submerged between the pontoons of a gantry barge to a dock in Stromness, Orkney. A coat of algae, barnacles and sea anemones grew on the datacenter during its two-year deployment. Photo by Jonathan Banks.
    The Northern Isles datacenter attached to a ballast-filled triangular base
    3 of 14The Northern Isles datacenter was attached to a ballast-filled triangular base for deployment 117 feet deep on the seafloor off the Orkney Islands in Scotland in 2018. The Project Natick team retrieved the datacenter this summer. Two years underwater provided time for a thin coat of algae and barnacles to form on the steel tube, and for sea anemones to grow to cantaloupe size in the sheltered nooks of its ballast-filled triangular base. Photo by Jonathan Banks.
    The front end of the Northern Isles datacenter encrusted with algae and barnacles
    4 of 14The Northern Isles was gleaming white when deployed. Two years underwater provided time for a thin coat of algae and barnacles to form on the steel tube. Microsoft Project Natick team members said swift ocean currents at the deployment site limited growth of marine life. Photo by Jonathan Banks.
    A man stands on a ladder holding a sea urchin
    5 of 14Stephane Gouret of Naval Group checks out a sea urchin that grew in a sheltered nook of the ballast-filled base for the Northern Isles underwater datacenter. Microsoft’s Project Natick team deployed the datacenter to the seafloor off the coast of the Orkney Islands in Scotland where it operated for two years. Photo by Jonathan Banks.
    Two people in a bucket lift power washing at the front end of the Northern Isles datacenter
    6 of 14Members of the Project Natick team power wash the Northern Isles underwater datacenter, which was retrieved from the seafloor off the Orkney Islands in Scotland. Two years underwater provided time for a thin coat of algae and barnacles to form on the steel tube, and for sea anemones to grow to cantaloupe size in the sheltered nooks of its ballast-filled triangular base. Photo by Jonathan Banks.
    Two people in a bucket lift power washing on top of the Northern Isles datacenter
    7 of 14Members of the Project Natick team power wash the Northern Isles underwater datacenter, which was retrieved from the seafloor off the Orkney Islands in Scotland. Two years underwater provided time for a thin coat of algae and barnacles to form on the steel tube, and for sea anemones to grow to cantaloupe size in the sheltered nooks of its ballast-filled triangular base. Photo by Jonathan Banks.
    A seabird sits on top of the cleaned Northern Isles datacenter
    8 of 14A seabird alights atop the Northern Isles underwater datacenter after it was retrieved from the seafloor off the Orkney Islands in Scotland and cleaned. The datacenter operated on the seafloor for two years as part of Microsoft’s Project Natick. The project is a years-long effort to prove the underwater datacenter concept is feasible as well as logistically, environmentally and economically practical. Photo by Jonathan Banks.
    The Northern Isles datacenter being cleaned by two people on top in a bucket lift, and a person cuts the datacenter from its base
    9 of 14Members of Microsoft’s Project Natick team use a bucket lift to collect air samples from the Northern Isles underwater datacenter, which was filled with dry nitrogen and sealed prior to deployment to the seafloor off the Orkney Islands in Scotland. Another team member cuts the datacenter from its ballast-filled base in preparation for transport to the mainland. Photo by Jonathan Banks.
    A person helps remove the end cap of the Northern Isles datacenter
    10 of 14Members of the Project Natick team remove the endcap from the Northern Isles underwater datacenter at Global Energy Group’s Nigg Energy Park facility in the North of Scotland. The datacenter was filled with dry nitrogen and spent two years on the seafloor off the Orkney Islands as part of a years-long effort to prove the underwater datacenter concept is feasible as well as logistically, environmentally and economically practical. Photo by Jonathan Banks.
    Two people work at the front of the Northern Isles datacenter with its endcap removed
    11 of 14Members of the Project Natick team inspect the inside of the Northern Isles underwater datacenter at Global Energy Group’s Nigg Energy Park facility in the North of Scotland after the endcap’s removal. When deployed on the seafloor, cabling connected the underwater datacenter to the Orkney Island power grid, which is supplied 100% by renewable energy technologies.
    A man stands inside the Northern Isles datacenter removing a server
    12 of 14Spencer Fowers, a principal member of technical staff for Microsoft’s Special Projects research group, removes a server from the Northern Isles datacenter at Global Energy Group’s Nigg Energy Park facility in the North of Scotland. Project Natick researchers will analyze it to help determine why the servers in the underwater datacenter were eight times more reliable than those in a replica datacenter on land. Photo by Jonathan Banks.
    Server racks being removed from the Northern Isles datacenter
    13 of 14Members of the Project Natick team remove 12 racks of servers and related cooling system infrastructure from the Norther Isles underwater datacenter. The servers in the underwater datacenter were eight times more reliable than those in a replica datacenter on land. Photo by Jonathan Banks.
    A man stands in front of a cleaned Northern Isles datacenter
    14 of 14Mike Shepperd, a senior research and development engineer with Microsoft’s research organization, stands in front of the barnacle-encrusted Northern Isles underwater datacenter. The datacenter was deployed to the seafloor off the Orkney Islands in Scotland as part of Project Natick, a years-long effort to prove the underwater datacenter concept is feasible as well as logistically, environmentally and economically practical. Photo by Jonathan Banks.

    Algae, barnacles and sea anemones

    The Northern Isles underwater datacenter was manufactured by Naval Group and its subsidiary Naval Energies, experts in naval defense and marine renewable energy. Green Marine, an Orkney Island-based firm, supported Naval Group and Microsoft on the deployment, maintenance, monitoring and retrieval of the datacenter, which Microsoft’s Special Projects team operated for two years.

    The Northern Isles was deployed at the European Marine Energy Centre, a test site for tidal turbines and wave energy converters. Tidal currents there travel up to 9 miles per hour at peak intensity and the sea surface roils with waves that reach more than 60 feet in stormy conditions.

    The deployment and retrieval of the Northern Isles underwater datacenter required atypically calm seas and a choreographed dance of robots and winches that played out between the pontoons of a gantry barge. The procedure took a full day on each end.

    The Northern Isles was gleaming white when deployed. Two years underwater provided time for a thin coat of algae and barnacles to form, and for sea anemones to grow to cantaloupe size in the sheltered nooks of its ballast-filled base.

    “We were pretty impressed with how clean it was, actually,” said Spencer Fowers, a principal member of technical staff for Microsoft’s Special Projects research group. “It did not have a lot of hardened marine growth on it; it was mostly sea scum.”

    A member of the Project Natick team power washes the Northern Isles underwater datacenter, which was retrieved from the seafloor off the Orkney Islands in Scotland. Two years underwater provided time for a thin coat of algae and barnacles to form on the steel tube, and for sea anemones to grow to cantaloupe size in the sheltered nooks of its ballast-filled triangular base. Photo by Simon Douglas.

    Power wash and data collection

    Once it was hauled up from the seafloor and prior to transportation off the Orkney Islands, the Green Marine team power washed the water-tight steel tube that encased the Northern Isles’ 864 servers and related cooling system infrastructure.

    The researchers then inserted test tubes through a valve at the top of the vessel to collect air samples for analysis at Microsoft headquarters in Redmond, Washington.

    “We left it filled with dry nitrogen, so the environment is pretty benign in there,” Fowers said.

    The question, he added, is how gases that are normally released from cables and other equipment may have altered the operating environment for the computers.

    The cleaned and air-sampled datacenter was loaded onto a truck and driven to Global Energy Group’s Nigg Energy Park facility in the North of Scotland. There, Naval Group unbolted the endcap and slid out the server racks as Fowers and his team performed health checks and collected components to send to Redmond for analysis.

    Among the components crated up and sent to Redmond are a handful of failed servers and related cables. The researchers think this hardware will help them understand why the servers in the underwater datacenter are eight times more reliable than those on land.

    “We are like, ‘Hey this looks really good,’” Fowers said. “We have to figure out what exactly gives us this benefit.”

    The team hypothesizes that the atmosphere of nitrogen, which is less corrosive than oxygen, and the absence of people to bump and jostle components, are the primary reasons for the difference. If the analysis proves this correct, the team may be able to translate the findings to land datacenters.

    “Our failure rate in the water is one-eighth of what we see on land,” Cutler said. “I have an economic model that says if I lose so many servers per unit of time, I’m at least at parity with land,” he added. “We are considerably better than that.”

    Members of the Project Natick team power wash the Northern Isles underwater datacenter, which was retrieved from the seafloor off the Orkney Islands in Scotland. Two years underwater provided time for a thin coat of algae and barnacles to form on the steel tube, and for sea anemones to grow to cantaloupe size in the sheltered nooks of its ballast-filled triangular base. Photo by Jonathan Banks.

    Energy, waste and water

    Other lessons learned from Project Natick are already informing conversations about how to make datacenters use energy more sustainably, according to the researchers.

    For example, the Project Natick team selected the Orkney Islands for the Northern Isles deployment in part because the grid there is supplied 100% by wind and solar as well as experimental green energy technologies under development at the European Marine Energy Centre.

    “We have been able to run really well on what most land-based datacenters consider an unreliable grid,” Fowers said. “We are hopeful that we can look at our findings and say maybe we don’t need to have quite as much infrastructure focused on power and reliability.”

    Cutler is already thinking of scenarios such as co-locating an underwater datacenter with an offshore windfarm. Even in light winds, there would likely be enough power for the datacenter. As a last resort, a powerline from shore could be bundled with the fiber optic cabling needed to transport data.

    Other sustainability related benefits may include eliminating the need to use replacement parts. In a lights-out datacenter, all servers would be swapped out about once every five years. The high reliability of the servers means that the few that fail early are simply taken offline.

    In addition, Project Natick has shown that datacenters can be operated and kept cool without tapping freshwater resources that are vital to people, agriculture and wildlife, Cutler noted.

    “Now Microsoft is going down the path of finding ways to do this for land datacenters,” he said.

    Go anywhere

    Early conversations about the potential future of Project Natick centered on how to scale up underwater datacenters to power the full suite of Microsoft Azure cloud services, which may require linking together a dozen or more vessels the size of the Northern Isles.

    “As we are moving from generic cloud computing to cloud and edge computing, we are seeing more and more need to have smaller datacenters located closer to customers instead of these large warehouse datacenters out in the middle of nowhere,” Fowers said.

    That’s one of the reasons Chappell’s group in Azure is keeping an eye on the progress of Project Natick, including tests of post-quantum encryption technology that could secure data from  sensitive and critical sectors. The ability to protect data is core to the mission of Azure in multiple industries.

    “The fact that they were very quickly able to deploy it and it has worked as long as it has and it has the level of encryption on the signals going to it combines to tell a pretty compelling vision of the future,” Chappell said.

    Related

    • Learn more about Project Natick
    • Read about the deployment of the Northern Isles in the Orkney Islands
    • Listen to a podcast with Ben Cutler about Project Natick
    • Check out how Project Natick helped the hunt for a COVID-19 vaccine

    John Roach writes about Microsoft research and innovation. Follow him on Twitter.

    Tags:

    • Cloud
    What's new
    • Surface Pro 9
    • Surface Laptop 5
    • Surface Studio 2+
    • Surface Laptop Go 2
    • Surface Laptop Studio
    • Surface Go 3
    • Microsoft 365
    • Windows 11 apps
    Microsoft Store
    • Account profile
    • Download Center
    • Microsoft Store support
    • Returns
    • Order tracking
    • Virtual workshops and training
    • Microsoft Store Promise
    • Flexible Payments
    Education
    • Microsoft in education
    • Devices for education
    • Microsoft Teams for Education
    • Microsoft 365 Education
    • Education consultation appointment
    • Educator training and development
    • Deals for students and parents
    • Azure for students
    Business
    • Microsoft Cloud
    • Microsoft Security
    • Dynamics 365
    • Microsoft 365
    • Microsoft Power Platform
    • Microsoft Teams
    • Microsoft Industry
    • Small Business
    Developer & IT
    • Azure
    • Developer Center
    • Documentation
    • Microsoft Learn
    • Microsoft Tech Community
    • Azure Marketplace
    • AppSource
    • Visual Studio
    Company
    • Careers
    • About Microsoft
    • Company news
    • Privacy at Microsoft
    • Investors
    • Diversity and inclusion
    • Accessibility
    • Sustainability
    English (United States) California Consumer Privacy Act (CCPA) Opt-Out Icon Your California Privacy Choices
    • Sitemap
    • Contact Microsoft
    • Privacy
    • Manage cookies
    • Terms of use
    • Trademarks
    • Safety & eco
    • Recycling
    • About our ads
    • © Microsoft 2023