Data Journalism Playbook

With insight from the KING 5 Data Journalism Pilot
When newsrooms began to discover the power of data journalism more than 50 years ago, finding stories in data required then-rare skills of programming mainframe computers and training in social science techniques like statistical analysis. Today, thanks to the development of powerful desktop computers and versatile software tools like Microsoft Power BI, good data journalism work is within reach of almost any newsroom — even yours.

This playbook is proof of that concept. Television newsrooms, with their limited staffing and tight time constraints, have been slower over the years than their print counterparts to adopt the tools of data journalism. However, forward-thinking station managers are realizing they need these skills in-house, but the supply of data-savvy video journalists and news technicians is limited. This pilot project by Seattle’s KING 5 reporters is an effort to meet that demand. Working with Microsoft’s Power BI team, they developed a repeatable process for generating ideas for data stories, acquiring the raw data, cleaning it, finding the interesting patterns in it, and then creating the graphics that would help tell the story to station viewers and website users.

Data journalism adds the weight of evidence, not just anecdote, to make stories. As this playbook lays out, the team discovered that even with great software tools, data journalism doesn't mean that a few taps on a computer keyboard will make good stories magically appear on television screens. Smart analysis often is just the first step of telling a powerful data story, which also requires the traditional skills of developing sources, reading documents, interviewing those affected, confronting those responsible, and then integrating everything into a compelling visual package.

Power BI brings to data journalism an A-to-Z set of analysis and graphics functions that can help with every phase of working with data. However, one lesson from this pilot project is that learning to use all that power can be overwhelming, like trying to fly a Lear jet when all that is needed in the beginning, at least, is to bicycle to the grocery store. Happily, novice data journalists don’t need to master all the buttons and switches of Power BI in order to start doing good data stories. Microsoft’s Excel spreadsheet, a close cousin to Power BI, is the easy-to-learn gateway drug to data journalism addiction. Reporters who learn the basics of Excel sorts, filters, functions and pivot tables will have in hand a multitool that will handle the majority of likely data journalism stories. And they’ll have a good running start into adding Power BI skills when they start bumping into limitations of what Excel alone can process.

So read this playbook and begin thinking about the data-sourced stories you’d like to do for your viewers and readers. You — and they — will be glad you did.

Steve Doig
Professor, Cronkite School of Journalism
Arizona State University
steve.doig@asu.edu
Intent of this playbook and story results from the pilot

This playbook aims to:

- Outline a data journalism process that can be adjusted for individual needs and gain efficiency over time.
- Share real-world experiences from the KING 5 data journalism pilot project, including examples of the people involved, processes followed and challenges overcome.
- Introduce Microsoft Excel and Microsoft Power BI as tools for data journalism.
- Provide suggested resources for deeper learning into each step of a project.
- Set guiding principles for journalists to uphold the Society of Professional Journalists Code of Ethics and other industry standards.

The following data stories were created and published with Microsoft Power BI during the KING 5 pilot:

“Where does Washington’s marijuana tax money go?”
Aired on August 8, 2018

“Washington congressional races on track to set fundraising records”
Aired on August 16, 2018

“Most Washington schools are failing to meet state’s target for vaccinations”
Aired on Sept 5, 2018

“What will Seattle traffic look like without the viaduct?”
Aired on September 18, 2018
Results: Data storytelling out performs traditional storytelling

Results indicate that interactive, data-driven content performs significantly higher than average than traditional content:

- **+730% views** compared to average views of stories with broadcast and online mentions in the same 6-week period.

- **+715% views** compared to average views of stories with broadcast and online mentions in the same 6-week period.

- **+510% vs. average** compared to average views of stories with broadcast and online mentions in the same 6-week period.
Data journalism as a repeatable process

Data journalism is an effective way to capture complicated information into an engaging infographic-style visualization that audiences can immediately grasp. Data by itself is just a collection of numbers, but data journalism is the process of investigating, understanding and shaping that data to tell compelling stories.

As with any reportage, data journalism does not follow a predetermined path. The diagram below offers a series of recommended steps for journalists, analysts and visualizers as they work together as a data journalism team. The process isn’t linear; in fact, steps are often revisited and repeated before a story is complete. Each step, however, should be undertaken at least once.
Time investment

The time it takes to create a data journalism story depends on many factors.

For example:
In the KING 5 pilot, one story aimed to predict how a major traffic flow change would impact morning commutes. Gathering the data required multiple exchanges with the Washington Department of Transportation and the Seattle Department of Transportation over a period of several weeks.

Another project centered around the marijuana excise tax revenue. The KING 5 team had to work through the data exploration and the idea and hypothesis generation steps several times, as the data exploration results repeatedly disproved the initial hypothesis. Eventually, we settled on more of an informational story rather than a deep investigation.

Lastly, the time to produce a story will decrease, as journalists in the same group share content, refine processes and gain expertise.

Gain efficiency by building reusable content

As the data journalism process is repeated over time, groups will realize efficiencies by maintaining datasets and developing stories that can be reused in the future or in other markets.

The building blocks of an efficient data journalism model can include the following:

- Defined workflows that map to the repeatable process on the previous page
- Repeatable story outlines
- Repositories of common and useful data sources
- Refined methods of data cleaning, exploration and analysis
- Data visualization templates and style guides
- Publishing processes

Repeatable story outlines:
Some story outlines are common and repeatable, and it’s likely there is data available.
For example:

- Traffic accidents
- Spending on schools
- Health care cost rates
- Sports
- Crime patterns
- Seasonal weather (drought, floods, snow, fires, hurricanes, cold snaps and heat spells)
- National, state and local elections
- City demographics, including immigration, homelessness and unemployment

Repositories of common and useful data sources:
When repeatable story outlines are developed, the data sources can be refreshed with considerably less effort than the first time the story is produced — not only is the origin of the data known (i.e., the contact and/or outlet who provided the data, the URL, etc.), but also the steps to clean, model and analyze the data.
For example:
KING 5 produced a story on congressional voting districts. Years later, the team was able to pull new data, open the existing Power BI data visualization, refresh the underlying data, make minor adjustments and turn the story around in less than two days.

Leveraging industry data sources is also an effective way to scale data story production.
News organizations like the Associated Press (AP) regularly release data with a national story to AP member organizations. Before release, a team of data journalists collects, validates, analyzes and models the data. By leveraging clean and newsworthy data like this, journalists can more quickly build visualizations relevant to their markets and viewers.

Refined methods of data cleaning and exploration:
Over time, as journalists become versed in technologies used for data journalism, like Excel and Power BI, they’ll become more skilled in data cleaning and data exploration. If there are data experts on the team, it can reduce the time to produce stories, as journalists will be able to narrow in on their story hypothesis faster.

Data visualization templates and style guide:
Storytelling often follows a recurring pattern. Telling stories with data is no different. With data visualization templates, discussed in more detail in a later section, moving from the data exploration step to storyboard and data visualization development can be a much easier transition.

Defining on-brand color palettes simplifies creating data visualizations and reduces cycle time in the data visualization refinement step. Approved color palettes should already be tested to be visible to people with colorblindness, and to show up well on TV. Establishing style guides can also reduce cycles in the data visualization refinement step by conforming to visual design best practices.

For example:
The KING 5 pilot project launched without a style guide. The data visualizations on the traffic forecasting story needed significant tuning prior to being cleared for airing on TV and publishing to the web. By the second story, a data visualization template had been put in place. The last story required just 20 percent of the time in the data visualization refinement step compared with the traffic forecasting story.

Maintaining a consistent look and feel will help build the station and group brand, as well as the audience’s familiarity with what to expect with data stories.

Publishing process
Documenting a publishing process for every broadcast and web story will reduce confusion, help ensure steps are not missed and keep team members on the same path.

"Storytelling often follows a recurring pattern."

"Telling stories with data is no different."

Microsoft
Myths and misconceptions

KING 5 started with many myths and misconceptions about data journalism.

Data Journalism stories can be turned around in a couple days or less
Producing stories can take anywhere from a few days to several weeks. Even when a process has been established, chasing the data trail can take up time.

Journalists can learn everything they need to know to be self-sufficient in producing data journalism stories
This isn’t necessarily false, but the team quickly learned that the complexity involved in data exploration and data visualization would leave journalists little to no time for the actual reporting.

Data delivered in the form of PDFs, PowerPoint, or in email is useful
Data in PDFs, PowerPoint or email aren’t useful in the context of data exploration because information in these formats are not easily machine-readable. This will be discussed in greater detail later in the playbook.

What you see on your screen when developing Power BI visualizations will be what the audience sees on TV
It’s always important to do a dry run of your story in the studio on the Surface Hub to ensure that your data visualizations will be readable by the TV audience. Even when station branding and approved color palettes are used, there may be other unexpected issues that arise, from font size to the type of data chart used.

Learning resources

The Data Journalism Handbook is used by students, researchers and practitioners learning about the state of the ever-evolving field of data journalism.

https://datajournalismhandbook.org/handbook/two#introduction

The Global Investigative Journalism Network has resources for data journalists — everything from guides on data mining to analysis, visualization, statistics, toolkits and more.

Investigative Reporters and Editors (IRE) is a nonprofit organization that offer resources, conferences and specializing training, including the Computer Assisted Reporting conference for data journalists. www.ire.org
Technology to enable the process

When Excel and Power BI are used together, you can follow steps in the data journalism process to discover, create and share powerful data-driven stories.

Introduction to Microsoft Excel

The world’s most widely used data and analytics tool, Excel can help anyone from novice to pros turn data into insights.

You can use Excel to create simple or complex spreadsheets from templates or from scratch. Once the data is entered, Excel can apply formulas to organize data and build powerful models. Enhanced by intelligence, the app can learn users’ patterns to auto-complete information (such as dates or states) with features like Flash Fill and Smart Fill, recognize stock information or flow geographical indicators like zip codes to a map.

Excel also makes it possible to connect, mash up and clean data.

Excel offers a variety of charts and graphs such as Waterfalls, Tree-maps, map charts and pivot tables to visualize your data in new ways. Bars, colors and icons help highlight patterns or trends in what would otherwise be a mass of information.

“Excel is the easy-to-learn gateway drug to data journalism addiction.”

– Steve Doig, Arizona State University

Introduction to Microsoft Power BI

Power BI is a business intelligence technology developed by Microsoft that’s used across industries by organizations of all sizes. While its main use is business intelligence, many journalists and storytellers use Power BI to discover, visualize and share interactive data stories online and on TV.

At a high level, Power BI is a collection of software services, apps and connectors that work together to turn unrelated sources of data into coherent, visually immersive and interactive insights. Whether data is derived from a simple Excel spreadsheet or a collection of cloud-based and on-premises hybrid data warehouses, Power BI easily connects to data sources to enable users to visualize (or discover) what’s important, and share.

Power BI can be simple and fast – capable of creating quick insights from an Excel spreadsheet or a local database. But Power BI is also robust and enterprise-grade, ready
for extensive modeling and real-time analytics, as well as custom development. So, it can be your personal report and visualization tool, and can also serve as the analytics and decision engine behind group projects, divisions, or entire corporations.

Power BI consists of a Windows desktop application called Power BI Desktop, an online SaaS (Software as a Service) called the Power BI Service, and mobile Power BI apps for phones and tablets. These three elements — desktop, service, mobile — allow people to create, share and consume business insights in the way that serves them, and their audience, most effectively.

Typically, data journalists use the Power BI Desktop application for all the steps defined in the data journalism as a repeatable process model, with the exception of the publication and sharing of the content. The Power BI Service enables users to publish the reports built in desktop to the Microsoft Cloud, making it easy to share the data stories with audiences.

Learning resources

Learn more about Excel
Visit the Excel help center to find training, support and news. https://support.office.com/en-us/excel

Power BI in the news
See how other journalists are using Power BI for data stories. https://microsoft.baa.nz/

Power BI for Data Journalism
To get deeper into the tool and become more self-sufficient, go through the Power BI data journalism onboarding tutorial on Microsoft’s website. https://powerbi.microsoft.com/en-us/datajournalism/

Power BI Guided Learning
Follow the on demand guides learning for Power BI. https://docs.microsoft.com/en-us/power-bi/guided-learning/

Power BI Community
Share ideas, get support, submit feature requests and engage with other data enthusiasts in the community. https://community.powerbi.com/
There are a lot of ideas that lend themselves well to data journalism and an equal number of ideas that don’t.

So, what works and what doesn’t?

A great online data journalism story invites the community to interact with the data itself, explore it visually and uncover insights on their own terms. Many journalists we work with find that this engagement builds trust in the news, strengthens communities and builds a personal and news outlet brand.

Perhaps the best way to frame your thinking around idea and hypothesis generation is to consider that by producing publicly available data, we have the opportunity to lead the narrative on stories of interest in our communities, whether that’s locally, regionally or nationally.

The following data stories were created and published with Microsoft Power BI during the KING 5 pilot:

“Where does Washington’s marijuana tax money go?” Aired on August 8, 2018

“Washington congressional races on track to set fundraising records” Aired on August 16, 2018

“Most Washington schools are failing to meet state’s target for vaccinations” Aired on Sept 5, 2018

“What will Seattle traffic look like without the viaduct?” Aired on September 18, 2018

The team also researched the issue of domestic migration but decided not to move forward with the story when they discovered the data available wasn’t up to date and didn’t prove meaningful trends. This is a good example of how working through the idea and hypothesis generation stage can result in a different outcome than expected.

These chosen stories represented four areas of heavy public interest. For example, the station received many calls from the community asking where the marijuana tax money was going — in particular, if the funds were paying for schools or roads. The team showed that marijuana excise tax revenue was allocated mostly toward public health and substance abuse prevention, and that it represented only 1.43% of all tax revenue and .49% of the total budget.

“... the idea and hypothesis generation stage can result in a different outcome than expected.”
Go deeper, and bring your audience

Data journalism empowers people with the tools to analyze large quantities of information and visualize insights.

Visualizations can expose hidden relationships, make the complex appear simple, and allow the audience to engage with the data. Microsoft Power BI allows stories to be shared with interactive data visualizations viewable on any device. Rather than just telling a story, good data journalism starts a conversation.

When selecting an idea and formulating a hypothesis to pursue for a data journalism story, keep your audience and the data available in mind to maximize your impact.

Visualizations can expose hidden relationships, make the complex appear simple, and allow the audience to engage with the data.

Learning resources

Data Journalism Award Winners
Get inspired by exploring what other journalists have done. https://www.datajournalismawards.org

Women in DataViz Twitter list
Keep up this open, evolving Twitter list of the female talent working with, studying and making dataviz. https://twitter.com/sarahslo/lists/women-in-dataviz

NYT Graphics Twitter
Keep up to date on data visualization in journalism by following one of the industry leaders. https://twitter.com/nytgraphics
Data gathering

Once you have your idea or test hypothesis, the next step is finding and gathering data.

Data can come from a variety of different public and private sources and in a dizzying variety of files and formats.

“Whenever possible, request the most granular level of information.”

How to request data

If you’re requesting data from a public or private contact, be clear on what you mean by data:

1. Whenever possible, request the most granular level of information.

 This means raw data that hasn’t yet been aggregated (grouped) or transformed in any way. This is important because aggregated data forces you to look at the data in terms of the groupings already applied to it. Granular data allows you to look at the data from any perspective to uncover trends that might be hidden and define the formulas of any transformations you apply to the data in the data exploration step. You can also be completely transparent with your readers when sharing your methodology.

2. Be sure to request data in a machine-readable, electronic format, and provide examples: Microsoft Excel workbooks, comma-separated value (.csv) files, and .xml file formats are all great examples.

 Scans of paper documents, microfiche, .pdf files, emails or Microsoft Word documents are examples of file formats that can be incredibly difficult to work with for data exploration.

3. Always request a data dictionary or record layout.

 This will help you understand the context of the data and should include things like descriptions of fields and code values, how missing data is handled and formulas for any aggregations applied.

4. Request that sensitive data, including personally identifiable information (PII), be removed before sending it to you, unless you absolutely need this data for your story.

 Be careful with datasets that include sensitive information. When in doubt, consult newsroom management and newsroom counsel.
Data gathering

What worked well in the KING 5 pilot?

The immunization story’s data was easy to work with, as the state of Washington stored almost everything the team needed online in Excel spreadsheets, with documentation of what data fields meant and how the data was gathered.

What didn’t work well in the KING 5 pilot?

The data delivered for the traffic forecasting story was in a difficult format. The Seattle Department of Transportation and Washington Department of Transportation did provide a lot of data in Excel, but a considerable amount of other data was delivered in more than 100 PDFs of scanned printouts from traffic reader machines formatted with COBOL output. To use this data, significant time had to be invested to copy out individual data points from the scanned PDFs. Remember, it’s always best to be clear with your contacts that you need data that can be machine-readable and communicate what this means if your contact isn’t sure.

Public sources of data

Fortunately, many branches of federal, state and local government; universities, research institutions and even private companies publish robust, publicly available datasets that are well-documented and maintained by professionals.

From the Seattle Department of Transportation, to Zillow’s research on housing markets, there’s an ocean of data to be mined. Additionally, Non-Government Organizations (NGOs) and non-profit agencies also often make their data available for use, and effective use of data can support their missions. Lastly, with the growing popularity of Data Science competitions, many thousands of datasets covering a vast number of subjects have been created and shared around the world.

Leaked or hacked data

There are many risks that come with leaked or hacked data. We recommend extreme vigilance to avoid personally identifiable information, viruses and malware. Be sure to seek the advice of your station manager and news director and refer to the AP’s Briefing on Media Law before using any leaked or hacked data.

Excel tip

When you are working with multiple data files, the Get & Transform feature pulls data into Excel, including other Excel files. Interlinking data means that the designated master Excel file can be refreshed any time without the need to copy and paste from other workbooks so you can keep a single version of the truth. Later all the queries, data models and reports that were created in Excel can transfer to an interactive dashboard in Power BI. It is a common foundation between the two apps.
Data gathering

Storing data

Establish detailed infrastructure and processes when saving data projects to a central location for your team or organization, such as a SharePoint folder stored under a Microsoft Teams site. Establishing best practices, like file-naming conventions and backup protocol, will enable version control and help working groups be more efficient. Files saved in SharePoint can also be imported into Power BI as a data source, making it easier for multiple people to collaborate on data exploration and the development of data visualizations in Power BI.

If your data is considerably large (gigabytes in size and hundreds of millions or billions of records), it is best to store this data in a cloud service, such as Azure SQL Data Warehouse.

Before storing and using any data source, take the time to assess how current the data is, its accuracy and the reliability of its producers. Additionally, determine if the data source is free from any biases where possible, or at least note what the bias is. (See section on identifying bias in the appendix.)

Always appropriately notate your data sources in your published work.

Learning resources

Global Investigative Journalism Network

Associated Press Stylebook
The AP Stylebook now includes a chapter on data journalism. https://www.apstylebook.com

Getting and cleaning data in Power BI
Guided learning on getting data. https://docs.microsoft.com/en-us/power-bi/guided-learning/gettingdata

Excel Get & Transform and PowerPivot

Freedom of Information Act Request
To learn how to submit a Freedom of Information Act request, visit https://www.foia.gov/

See sample FOIA request letters at https://www.nfoic.org/sample-foia-request-letters
It’s a fact of life: messy data is everywhere.

Fortunately, the tools and methods to “clean” data are widely available, free or low-cost and flexible enough to apply to almost all data you’ll encounter. Journalists may choose to partner with data specialists to ensure that data is clean and accurate. The following five principles underscore the core concepts of data quality.

Uniqueness

The third principle refers to there being a single view of the dataset and preventing duplication in the data. For example, if your aim is to measure total car accidents over time in the state of Washington, if accidents from Spokane are duplicated in a given year, the resulting analysis will be erroneously inflated.

Completeness

Are all relevant data items recorded? For example, if you are attempting to explore crime data for a major city, are all districts present in the data? Check for null values and be critical of omissions.

Consistency

Is the data formatted the same way across the entire dataset? Was the way in which the data was recorded kept consistent over time? For example, if your data includes U.S. state names, all state names should be completely spelled out or abbreviated, not both. Or, if your data includes a health index score, and for 20 years it was recorded on a scale of 1-100, and for the last three years it was changed to a 1-500 scale, this will need to be adjusted for in your data. Be very careful with historical data, as measurement methods (or, in the case of economic figures, inflationary values) may have changed over time.

Journalists may choose to partner with data specialists to ensure that data is clean and accurate.
Data cleaning

Integrity and validity

Is the data unchanged from its source? Data integrity is considered intact if the data is whole and intact and has been unaltered since its creation in any material way. Data is said to be valid if it conforms to the format, type and range of its syntax definition.

Accuracy

How well does the data describe the real-world event or object being represented? For example, if your story idea is to show post-graduate education costs compared against average income of 20- to 30-year-old working professionals over the last 10 years, but your data is sourced from 1955, your data is not accurate. Consider another example, identifying the gender pay gap simply by comparing average pay of men and women is an incomplete and inaccurate portrait; instead, comparing pay within industries as well as experience levels provides a more nuanced and truer story.

Tech tip

Before importing data into Power BI, depending on the nature of data cleanliness issues, it often makes sense to first clean the data in Excel. Power BI offers tools to clean and transform data, but for the most part, they are best applied when the cleanliness issues occur uniformly across the entire dataset. For example, Excel is the best tool to complete the following tasks:

- Change a column of data from a decimal to a percentage or whole number, or if you want to extract data elements from a column of dates.

- Remove duplicate records, replace text values with different text values, correct non-printable characters or date and time values.

- Cleaning large datasets (from a few thousand rows of data, up to a million rows of data). For data with more than one million rows, it is best to use enterprise-grade data engineering tools such as Microsoft SSIS. These tasks are often completed by data experts working with the journalist writing the story.
Data cleaning

Tools like Microsoft Excel and Power BI can dramatically decrease the time and effort needed to clean data. Investing in learning technology or hiring experts can have a profound impact on the data literacy and data culture across an organization.

For example, cleaning your data with reusable steps in Power Query saves you time by splitting columns, merging tables or removing duplicates. Power Query is available in both Excel and Power BI.

Once the data is cleaned and the models are built, the Schedule Data Refresh automates data updates. The data sources configured in Power Pivot refresh in the background. When the dashboard is opened, the right data will be there — without requiring any action.

Remember to always back up the original data files before making updates in Excel, and to keep a record of the changes you’re making if you expect to get an updated version of the data with similar inconsistencies. Some central storage solutions often have version histories, but that should be relied upon only in the cases of emergency.

At this point, you’ll likely be gaining insights into your information that help you begin to discover the story. As you continue through the data journalism process, visualization tools in both Excel and Power BI offer ways to explore and present data.

Learning resources

Top 10 ways to clean your data in Excel
Microsoft’s top 10 ways to clean your data in Excel will have you moving fast in no time.

Power Query
Power Query, (also known as Get & Transform) provides an intuitive and consistent experience for discovering, combining, and refining data across a wide variety of sources in Excel and Power BI.
https://support.office.com/en-us/article/get-transform-in-excel-881c63c6-37c5-4ca2-b616-59e18d75b4de
Importing and modeling

Getting data into Power BI is straightforward

This section serves as an introduction to 1) help you decide if you need or want to pursue to more advanced training or 2) give you the basic tech fluency to work with experts. Either way, Microsoft provides online guided learning to make the steps fast and easy to learn. Microsoft also hosts training specifically for journalists.

At this stage in the repeatable process for data journalism we have transitioned from Excel to Power BI, so the guidance below assumes you’re using Power BI for these steps. Excel also offers powerful data modeling capabilities.

Importing
Excel and Power BI work with data from many sources and in many formats. Power BI can connect to data from files, databases, Microsoft Azure and many other online services. It also provides the tools for developers to create custom connectors for new data sources.

Once the data is imported you can refresh data with one click, and if the report is published to the Power BI Service you can schedule automatic updates.

Importing data into Power BI does not replace or modify the source files, it provides the tools to define and apply repeatable steps to transform the data. This provides transparency for the methodology by providing a record of steps for others to recreate or reverse. If you are cleaning or modifying data in another tool it’s important to record your process and keep versions of your unaltered and transformed source files.

Data modeling
It’s likely that complex data modeling activities will be handled by data specialists, however a little understanding and time will enable you to create well-structured and well-named data models. This allows you to easily visualize your data to find and highlight the stories it contains.

Tables
Building a data model involves importing data from various sources into tables. Tables provide structure to organize your data and apply decisions like how granular your data should be, and how to pivot it. Creating relationships between the tables will allow you to look at and perform calculations on related groups of data within the tables.
Importing and modeling

Import data into tables

Build relationships

In Power BI reports users drag and drop fields into the report canvas. The relationships defined in the data modeling step assist in visualizing and performing calculations on groups of data.

Think of a spreadsheet with columns and rows. A sheet likely has a table of data, and each column in this table will become a field that you can drag and drop into a Power BI visualization to slice your data in various ways.

In the simplest sense your data is made up of categorical and numeric fields.

- Categorical, also known as qualitative, fields can be used to group your data. Examples of categorical fields include gender, education level, state, or zip code.

- Numerical, also known as quantitative fields can be used in mathematical calculations like sums or averages. A simple test is to ask: “Can I do arithmetic on this field?”

Tables in Power BI can include any number and combination of these field types and can be modelled in more or less structured ways depending on the complexity of the data and the
Importing and modeling

requirements for reporting. In a report a single table may be enough.

Granularity

As mentioned in the Data Gathering chapter, understanding the difference between fine and course grained data will help when requesting data. Getting data at the right level of detail early also makes modelling easier and will give you more flexibility when building reports and sharing your methodology.

Granularity refers to the level of detail in a table, model or dataset. The finer the level of detail in your data, the more flexible it will be to work with. You can slice and aggregate data in Power BI to view it from different perspectives to find insights, patterns, or trends. This is all considered ‘modeling your data’.

A table containing the response to a question along with the respondent’s gender and age with one response on each row is more fine-grained than the same data provided as a percentage of positive responses to that same question grouped by age and/or gender.

<table>
<thead>
<tr>
<th>Fine-grained</th>
<th>Course-grained</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Age</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

In the course-grained example we cannot model the data to redefine our age range or ask simple questions like ‘how many people were surveyed’, or ‘how many women ages 20-24 responded Yes’.

This can impact your ability to tell a data story because if your data is already aggregated it will be course-grained and you will be limited to looking at the data using those categories. It is difficult and often not possible to un-aggregate data, so this will restrict the ways you can slice the data, limit the stories you can find and the interactivity of your final report.

Relationships

You can enhance your data model by mashing-up different datasets against your existing data. For example, if your data only contains a state abbreviation you can bring a dataset containing full state name, populations, and capitals into Power BI as a separate table.

Data modeling allows you to define relationships between different datasets using fields they have in common such as names or identifying numbers. Power BI then utilizes these relationships to cross-filter the data depending on selections you make. This enables you to quickly explore the data, find
Importing and modeling

anomalies, see different slices of the data, and identify trends without needing to combine or slice the data manually.

For the most part, Power BI automatically detects the keys between your tables when the data is imported and defines the relationships for you.

Pivoting and un-pivoting

In Power BI, Pivoting is a way to transform a table from a tall narrow table to a short wide table by moving the values from multiple rows and making them the values in columns of a single row.

<table>
<thead>
<tr>
<th>State Name</th>
<th>L2 Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>39536653</td>
</tr>
<tr>
<td>Texas</td>
<td>28304596</td>
</tr>
<tr>
<td>Florida</td>
<td>20984400</td>
</tr>
</tbody>
</table>

Un-pivoting performs a similar operation in reverse. It moves the columns of data to individual rows.

<table>
<thead>
<tr>
<th>L2 California</th>
<th>L2 Texas</th>
<th>L2 Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>39536653</td>
<td>28304596</td>
<td>20984400</td>
</tr>
</tbody>
</table>

Working with a model that includes un-pivoted data can be incredibly useful. When groups or names are in one column, and values are in another, you can group and slice by the name column and aggregate the data to get totals, sums, or averages from the value column.

Understanding how and when to pivot and un-pivot data will improve your ability to model the data to suit your needs.

Summary and KING 5 case study

Data modelling ideas and concepts like tables, granularity, relationships, and pivoting can empower tech fluent journalists to be more self-sufficient when performing data analysis and creating data visualizations, and help you better understand how to gather and prepare data that’s easy to work in Power BI.

These principles can be used to create clear and concise data models. KING 5’s traffic projection story, shown in the screenshot below, is a good example:
Sophisticated data modelling enabled the KING 5 project team to solve an interesting challenge. The goal of the story was to present a map within the report showing all affected routes at once, while also enabling users of the report to select any combination of “segments”, (the data label for traffic routes), and times of day to view correct vehicle volume totals. To achieve this the data for the route location, before and after volume, and volume at specific times was separated into different tables. A fourth table was created containing the “Segment” name in common to all of them and each visualization was then tied to its corresponding table.

This screenshot shows a view of the report with the various slices selected:

Learning resources

Power BI guided learning
Microsoft Power BI provides guided learning on modeling data, visualizations, and much more.
https://docs.microsoft.com/en-us/power-bi/guided-learning/

Create a data model in Excel
Follow the steps to integrate table from multiple tables.
https://support.office.com/en-us/article/Create-a-Data-Model-in-Excel-87E7A54C-87DC-488E-9410-5C75DBC0F7B
Prove or disprove your hypothesis, develop your story idea and unlock insights buried in your data

The potential of Power BI for data journalists is in its ability to be the tool that allows you to create and share engaging data visualizations, as well as to drive efficiency by being a rapid data exploration tool.

Now that you’ve loaded your data into Power BI Desktop, it’s ripe for exploration. By playing with the data, you’ll be able to prove or disprove your story hypothesis, realize the need for additional supporting data or discover hidden trends that may take your story in a different direction altogether.

As you move through your data analysis and exploration, you may want to work with a data specialist to take notes of any calculated metrics you create or data transformations you employ as part of your methodology documentation to be shared upon publishing.

Additionally, keep in mind the list of biases to avoid, shared in the appendix. The golden rule is that all insights shared within a data journalism story should be reproducible and ideally, as straightforward as possible. Examples of goals you may want to set include providing transparency, making the complex appear simple and initiating conversations.

Exploring your data

A benefit of Power BI is that you can easily try out many different visuals without coding. Depending on your data and the analysis you want to do, the first visual you bring into your report canvas may be as straightforward as a graph, table or map, or as unique as a ribbon chart or waterfall. You can also add things like slicers to slice the measures or facts tied to your graphs, maps or tables. We’ll discuss more about what visuals are available in the next section.
Data exploration

By dragging a visual into your report canvas, followed by dragging attributes from the tables of data you have imported into Power BI into the fields pane, you can start to interact with your data. Note that selections made to a visual in the report canvas affect other visuals.

For example, imagine you want to create a filled map visual of the United States the day after the national elections. The map has two characteristics: States are colored by the prevailing political party, and a card visual shows the total number of voters. By default, the card visual will show the sum of all U.S. voters. Select a state, and the card will change to show the number of voters of that state.

In addition to the visuals available by default, Power BI is supported by an enormous online community of developers who create custom visuals. So if there is a particular visual that you’d like to use but don’t see in the default visuals library, search the online marketplace for free visual add-ons.

In some cases, you may commission a developer to build a new custom visual for your story.

Establish meaningful comparisons, find anomalies and report on trends

Data exploration and analysis are powerful tools to help build the credibility of your story and establish impartiality. During this step, you prove or disprove your hypothesis and uncover insight.

Comparisons
Meaningful comparisons will help your viewers and readers understand the story. For example, if your story is to show how much state spending is allocated to K-12 education, providing an absolute dollar figure by itself is not as meaningful as including K-12 education spending as a ratio of overall state spending. Even more pertinent is to compare this figure to other states, after normalizing for population size differences and economic wealth.

Relationships
The strength of relationships, also called the correlation, between variables can lead to important stories. For instance, an x-y scatterplot of the relationship between poverty and school test scores will generally show a strong negative relationship: As poverty levels go up, test scores typically are lower.

Correlation and Causation?
However, beware of assuming that a correlation between two variables means that one is causing the change in the other. It makes some sense that the burdens of poverty could be a cause of differences in test scores. But lots of correlations are spurious.
Data exploration

For instance, there is a strong positive correlation between the number of liquor stores and the annual number of divorces in cities. Is alcohol causing divorce, or are shaky marriages causing alcohol sales? Actually, neither: The hidden variable affecting both is the size of the population.

Anomalies
Finding anomalies is an important tool in data analysis. For example, on a scatterplot of school test scores from this year against last year, there should be a very strong positive correlation. Look for schools that don’t follow the pattern, showing a large improvement in scores from one year to the next. Either there’s a good story about an innovative teaching program being used – or a good story about teachers pressured to raise scores by cheating. The data won’t tell you which, but it will lead you to where more reporting will uncover the story.

Trends
Lastly, investigating where trends exist and develop over time can be an effective storytelling tool. If your story is on climate change, for example, a clustered bar chart visual showing ocean temperature, fish population and carbon dioxide levels in the atmosphere over time can help illustrate the impact of climate change. As a best practice, when showing change over time, use a vertical bar graph, and use a horizontal bar graph when showing absolute change.

For more information on understanding data variable relationships, please see the Appendix section entitled "Understanding and preventing bias."

“...investigating where trends exist and develop over time can be an effective storytelling tool.”

Learning resources

edX Course on Excel
This free 6-week training course provides advanced training on analyzing and visualization data in Excel.

Microsoft
Crafting the narrative of your story and selecting the best visuals to aid in its telling

You’ve explored and analyzed the data, gathered additional information from your sources and uncovered your key insights. By now, you should have locked in on your findings and are ready to write the story. As a journalist, this step is likely the most familiar — and exciting.

To ensure you’re representing the data component of the story, put yourself into the shoes of a person who is brand new to your subject and hasn’t yet been through the journey you have. What are the most important, logically sequenced steps needed to arrive at your key insights? How would you explain this to a close family member or friend?

Just as you would for your other stories, introduce the hypothesis or idea, the core issue, and create tension by explaining why it is important to the audience. Unfold the storyline, in clear, succinct steps, and build to the climax of the story. Consider what you want the data visualizations to communicate at first glance. Ensure your headline, visual choices and supporting text or charts are giving the viewers and readers the information you want to share.

Sometimes, having spent a considerable amount of time working up to this point, the tendency is to want to include more details than are necessary.

This detracts from the story, because data overload can interfere with the storytelling. Remember, you will share your complete methodology in the story notes. In telling the story itself, you must achieve just enough detail to make each step lead to the next, and no more.

Choosing the right visuals

You can choose from hundreds of visuals in Power BI. To help guide your decision-making on choosing visuals, remember that the goal is to make your data visualizations engaging, inviting and interactive.

As noted in the data exploration section, Power BI is supported by an enormous online community of developers who create custom visuals. So if there is a particular visual that you’d like to use but don’t see it in the default visuals provided, you can search the online marketplace for free visual add-ons.

When you are viewing your report in Power BI Desktop or editing a report in the service, this can be found by clicking on the ellipsis in the VISUALIZATIONS pane in Power BI, then clicking on the “Import from Marketplace” option:
Storyboard and data visualization

Within the marketplace, you can browse custom visuals by category or search for them by name:

For example, the KING 5 team wanted to show how traffic changed on particular routes in Seattle after the tunnel opened: The team chose the “Route Map” custom visual to show the routes color-coded on a map, “Enlighten Data Story” to display the changes in route volume at the bottom and “Chiclet Slicers” to select routes and years:

The team also placed text boxes on the report canvas, encouraging users to click through specific visuals. Users were prompted to click through “Chiclet Slicer” buttons to compare traffic volumes on different routes of Seattle.

A navigation bar was included to create a familiar user experience. This prompted users to advance to the next chapter of the story.
Storyboard and data visualization

To show how traffic flows changed once the tunnel was open and the viaduct was closed, the team used a “Sankey diagram” as the main visualization on the second page of the story:

Note how clicking on a route segment dynamically changes the Enlighten Data Story visual text:

These design choices made the story easy for readers to interact with even if they don’t have prior knowledge of analytics tools. When in doubt, choose visuals that are approachable rather than flashy.
Storyboard and data visualization

Using pages

Breaking down your story into pages is an effective technique to unfold the major steps, or chapters, of your story, particularly for broadcast.

To drive interaction for a web audience and make your data visualizations more approachable, try these tips:

- Use buttons with bookmarks to create simple navigation for users to traverse your data visualization.
- Prompt your audience to interact with the visualizations with your headline, text and visual cues.
- Include features that allow the audience to explore the data and generate new insights.
- As the web visuals won’t have live TV voiceover, include supporting text where needed.

For example, on the KING 5 immunization story, the team included the following key features on the visuals:
If you prefer to publish each page of your report as a separate asset, simply save and publish embed codes of each page of your Power BI reports separately. This allows you to write out your story in text and bring in your visualizations as it unfolds in written word. On the KING 5 immunization story, reporter Taylor Mirfendereski decided this would be the best way to tell the story. For example:

Keep in mind, however, that including multiple iframes on your page can slow down page load times. One way to improve page load times is to ensure each visualization file is saved separately to only include the pages needed at that stage of the story. This way, when the page loads, if you have five visualizations in your story, the page only loads five data visualization pages worth of data, as opposed to 25 pages worth of data.
Commonly used visuals in data journalism

Some of the commonly used visuals used in Power BI for data journalism that you should familiarize yourself with are:

- Clustered bar chart
- Line chart
- Area chart
- Stacked bar chart
- Pie chart
- Treemap
- Filled map
- Table
- Card
- Slicer
- Chiclet Slicer
- Enlighten Data Story
- Sankey diagram
- Maps

Gestalt Principles
Understand how humans typically see objects to design more engaging visualizations.
https://www.interaction-design.org/literature/topics/gestalt-principles

Gain efficiency with report themes
Creating predefined report themes and color palette in Power BI can help you reduce the cycle time of creating and refining data visualizations.
https://docs.microsoft.com/en-us/power-bi/desktop-report-themes

The Functional Art
Alberto Cairo’s blog on visualization, infographics, and data journalism.
http://www.thefunctionalart.com

Steve Haroz’s research
Steve studies how the human brain perceives and understands visually displayed information.
http://steveharoz.com/research/

Cultural blind spots
Read up on cultural blind spots in UX.
https://medium.com/nasdaq-design/cultural-blind-spots-in-ux-840353aa3cdd

Using Maps in Power BI
Maps are a common way to visualize data. Find out about options in Power BI.
https://docs.microsoft.com/en-us/power-bi/guided-learning/visualizations?tutorial-step=5#step-0
At this point of the data journalism process, you’ve achieved a lot and you are likely in the final stages of story development. By now, you should have your storyboard solidified, along with the draft data visualizations to tell the complete story. Data visualization refinement can be an intensive step but with the help of report templates, visual design guidelines, predefined color palettes, iconography repositories and stock photography, cycle time for this step can be dramatically reduced, improving overall efficiency.

Your data visualization should already employ interactive design and approachable visuals that prompt users to click through slicers of common dimensions and move through pages using familiar web navigation principles. Now, focus on defining the identity of your data visualization and making every page conform to the same style.

Report canvas areas

The main areas of the report canvas should be broken up into the page/title area, insight area, call-out area, navigation area and important notes.

These should be in the same place on every page of your data visualization.

The page/title area should be on the top as a header and can be one to two lines. Don’t let anything else touch this area and make sure to use both lines to respect the proportions and symmetry. Capital letters in the page/title area add impact.
Data visualization refinement

The insight area is below the title area and takes up most of the report canvas’s real estate canvas. This area is reserved only for visuals (charts, tables, maps, diagrams, etc.). Show only one at a time. Consider Miller’s Law. Use extra bookmarks to switch visuals if one page contains more than one.

The call-out area, ideally located below the insight area, highlights important information. Considering using an Enlighten Data Story visual to call out important details: Have the text and numbers be different sizes, bolding and increasing the size of the numbers. That said, remember to use the same text and number sizes in all pages to keep consistency.
Data visualization refinement

The navigation area can be on the bottom or either side of the report canvas. Utilize buttons with arrow icons to increase familiarity, and consider where you’ll be standing if you are using the report on air to ensure you can easily navigate between pages without blocking the information.

Notice that all screenshots provided from the KING 5 pilot stories followed this same template, even though their subject matter varied widely. By leveraging a repeatable template, you can be more effective in building your brand, as well as reduce cycle time on building professional data visualizations that provide clarity and consistency.

Adding icons, legends, indicators and other small elements in your pages will level up the quality of your data visualizations and create a personal touch.

Don’t be afraid to add extra elements to emphasize your message, but be careful not to oversaturate your pages. Remember, less is more. As a rule, use no more than two fonts and no more than three colors (or tight groups of colors if you are skilled in defining color palettes), within a given data visualization. Colors, and in particular images or icons, should be used to convey or highlight information, not as decoration, as this has been shown to decrease how memorable and impactful a data visualization can be.

As noted in an earlier section, provide meaningful comparisons in the form of ratios or percentages whenever possible.
Design checklist

You can use the following design checklist to help guide the final refinement of your story.

Layout

<table>
<thead>
<tr>
<th>Question</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the design consistent? For example, are elements in a consistent order, of a consistent size, and grouped logically to align to the template?</td>
<td></td>
</tr>
<tr>
<td>Do all relevant items appear?</td>
<td></td>
</tr>
</tbody>
</table>

Typography

<table>
<thead>
<tr>
<th>Question</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do your visualizations adhere to typography visual design guidelines?</td>
<td></td>
</tr>
<tr>
<td>Is your typography consistent and limited to no more than two fonts and three colors?</td>
<td></td>
</tr>
<tr>
<td>Is the hierarchy of the information presented clear?</td>
<td></td>
</tr>
<tr>
<td>Does your text have enough contrast, particularly in your call-out areas?</td>
<td></td>
</tr>
<tr>
<td>Do you employ good use of line height and paragraph spacing?</td>
<td></td>
</tr>
</tbody>
</table>

Color

<table>
<thead>
<tr>
<th>Question</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does your palette provide sufficient contrast to make content accessible?</td>
<td></td>
</tr>
<tr>
<td>Do you use no more than three colors (or tight groups of colors), based on an existing color palette aligned to your organization’s branding guidelines?</td>
<td></td>
</tr>
</tbody>
</table>

Interaction

<table>
<thead>
<tr>
<th>Question</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a clear call to action to engage with the content — i.e., will the reader know it’s interactive and which sections to click on? Use words, icons or both to encourage engagement.</td>
<td></td>
</tr>
<tr>
<td>Are interaction elements like buttons and slicers obvious, and are the relationships clear?</td>
<td></td>
</tr>
<tr>
<td>Is the overall navigation easy to understand and use?</td>
<td></td>
</tr>
<tr>
<td>If there is more than one page, is the navigation to the second page clear?</td>
<td></td>
</tr>
</tbody>
</table>
Data visualization refinement

Surface Hub and checks for live TV

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have you screen-tested the data visualizations in the studio using a TV camera and validated the TV audience will see your visuals as intended? Be sure to check that the visuals show up as expected.</td>
</tr>
<tr>
<td>Is all text readable on the control room TV from across the room?</td>
</tr>
<tr>
<td>Do your navigation area buttons work as expected on the Surface Hub, and can you reach them without stepping in front of the screen?</td>
</tr>
<tr>
<td>Is there enough contrast in your chosen color palette so that no visual or text is washed-out?</td>
</tr>
<tr>
<td>Is your station’s logo in a place on every page of your visual that won’t interfere or look odd when the station logo in the live TV watermark is used?</td>
</tr>
<tr>
<td>Have you validated upon publishing that all of your visuals render as expected? If not, you may need to adjust the position and size of some visuals in the web version of Power BI and save before airing.</td>
</tr>
</tbody>
</table>

Checks for publishing to the web

<table>
<thead>
<tr>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you are using multiple data visualizations in your web story, to speed up performance when the page loads, have you made sure that the data visualizations only include the necessary pages?</td>
</tr>
<tr>
<td>After publishing, check that all of your visuals render as expected. If not, you may need to adjust the position and size of some visuals in the web version of Power BI and save before publishing.</td>
</tr>
<tr>
<td>Have you remembered to save the visualization on the page you want to start from before publishing?</td>
</tr>
<tr>
<td>Have you used the Optimization Tool to ensure the report will adjust across device sizes?</td>
</tr>
</tbody>
</table>
General

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have you followed the AP Stylebook data journalism guidelines, or other industry standards?</td>
<td></td>
</tr>
<tr>
<td>If the report were shared without the page content, are the headline and story clear?</td>
<td></td>
</tr>
<tr>
<td>Are the page titles relevant and clear?</td>
<td></td>
</tr>
<tr>
<td>Have you checked for spelling, grammatical errors and general tidiness?</td>
<td></td>
</tr>
<tr>
<td>Are you using correct logos and conforming to brand guidelines?</td>
<td></td>
</tr>
<tr>
<td>Did you remember to include info about the data sources and your supporting methodology?</td>
<td></td>
</tr>
</tbody>
</table>

Learning resources

The Color Oracle
Use this color-blindness simulator for all platforms.
http://colororacle.org

Color Palette
ColourLovers is a creative community where people from around the world create and share colors, palettes and patterns.
https://www.colourlovers.com

Iconography
Over one million icons, free for use with attribution.
https://www.flaticon.com

Fonts free for commercial use
https://www.fontsquirrel.com
Publishing and sharing

The final step

By this point, you should have a:
- well-formulated hypothesis
- thorough, repeatable and defensible data analysis free from bias
- a storyboard that takes the time to progressively unravel the story one slice at a time
- refined data visualizations to make the experience inviting and interactive to your audience regardless of their culture or education.

The last step of publishing and sharing in the data journalism process is, in many ways, where the real journey begins.

Prior to publishing and sharing your story, however, it is a good practice to first share the key insights and methodology of your story with your data providers, particularly if you worked directly with contacts to source data not publicly available, or if your key insights may be controversial. This will create an opportunity to receive critical feedback and may even help you identify ways to strengthen your story before releasing it.

For example, on the KING 5 traffic story, Jake Whittenberg worked with contacts at Washington Department of Transportation to gather data. Before airing the story, Jake reviewed the team’s findings with the department before airing the story.

To maximize the potential impact of your story and drive transparency, remember to include the methodology used in your data analysis along with citations of all your sources.

Explain every decision made in your analysis. Additionally, detail the limitations of your analysis. Including your methodology can either be done directly in Power BI as a final page within your visualization, or as a separate notes section included within the published story online.

Power BI includes a feature to allow users interacting with your data visualizations to see the underlying data by right-clicking on any page and selecting the “Show Data” option. This makes the process of sharing your underlying data automatic, if the data used in Power BI was not transformed in any way prior to importing into Power BI. If you did transform your data in any material way prior to importing, either in Excel or otherwise, include a link in your story to download the original dataset directly in a machine-readable format, such as Excel or .csv. Provide a data dictionary to describe all attributes.

…”The last step of publishing and sharing in the Data Journalism process is, in many ways, where the real journey begins.”
Publishing and sharing

Publishing steps and live television considerations

Publishing in Power BI is easy.
In Power BI Desktop, simply click the Publish button in the top ribbon, and select the Workspace you’d like to publish to. Then navigate to Power BI in your browser, find and open your report in the Workspace you published it to, and click Publish to Web. You can select the size of your report in this step and use the HTML code to embed your visualizations into your story on your blog or website. When sized correctly, your report should fill the iframe without any grey borders.

Publishing your Power BI report for the web? Lukasz Pawlowski’s tool can help. Simply copy your Power BI embed URL into the tool, and click to optimize https://www.lukaszpawlowski-ms.github.ioOptimize-Publish-To-Web

If you are planning to air your Power BI data visualizations on live television in addition to publishing online, particularly using a Surface Hub on live TV where a camera is filming you telling the story using the touchscreen interface, it is a good idea to do a dry run in the studio and validate that all visualizations show up as expected in the control room. This is because when a camera films a screen, visuals with higher levels of brightness tend to not show up with the same contrast as they do on a monitor. In extreme cases, visuals do not appear at all. Doing a dry run can help prevent unwanted on-air distractions. Please refer to the Design Checklist to ensure all design considerations are made prior to airing on TV and publishing.

Learning resources

Publish to web with Power BI
Follow detailed instructions about how to publish your report to the web. https://docs.microsoft.com/en-us/power-bi/service-publish-to-web

Optimize your report
Use this handy tool to make sure your report fits to the iframe and page size. https://www.lukaszpawlowski-ms.github.ioOptimize-Publish-To-Web
Appendix

The learning resources included in each section are presented here for easy reference.

Contact Microsoft at DataJournalism@Microsoft.com for more information about training and support.

Data journalism

The Data Journalism Handbook is used by students, researchers and practitioners learning about the state of the ever-evolving field of data journalism.
https://datajournalismhandbook.org/handbook/two#introduction

The Global Investigative Journalism Network has resources for data journalists — everything from guides on data mining to analysis, visualization, statistics, toolkits and more.
https://helpdesk.gijn.org/support/solutions/articles/14000036505-data-journalism

Investigative Reporters and Editors (IRE) is a nonprofit organization that offer resources, conferences and specializing training, including the Computer Assisted Reporting conference for data journalists.
www.ire.org

Technology to enable the process

Learn more about Excel
Visit the Excel help center to find training, support and news
https://support.office.com/en-us/excel

Power BI in the news
See how other journalists are using Power BI for data stories.
https://microsoft.baa.nz/

Power BI for Data Journalism
To get deeper into the tool and become more self-sufficient, set aside approximately two hours to walk through the Data Power BI data journalism onboarding tutorial on Microsoft’s website.

Power BI Guided Learning
Follow the on demand learning guides.
https://docs.microsoft.com/en-us/power-bi/guided-learning/

Power BI Community
Share ideas, get support and submit feature requests and engage with other data enthusiasts in the community.
https://community.powerbi.com/

Idea and hypothesis generation

Data Journalism Award Winners
Get inspired by exploring what other journalists have done.
https://www.datajournalismawards.org

Women in DataViz Twitter list
Keep up this open, evolving Twitter list of the female talent working with, studying and making dataviz.
https://twitter.com/sarahslo/lists/women-in-dataviz

NYT Graphics Twitter
Keep up to date on data visualization in journalism by following one of the industry leaders.
https://twitter.com/nytgraphics
Data gathering

Global Investigative Journalism Network

Associated Press Stylebook
The AP Stylebook now includes a chapter on data journalism. https://www.apstylebook.com

Getting and cleaning data in Power BI
Guided learning on getting data. https://docs.microsoft.com/en-us/power-bi/guided-learning/gettingdata

Excel Get & Transform and PowerPivot

Freedom of Information Act Request
To learn how to submit a Freedom of Information Act request, visit. https://www.foia.gov/
See sample FOIA request letters at https://www.nfoic.org/sample-foia-request-letters

Importing and modeling

Power BI guided learning
Microsoft Power BI provides guided learning on modeling data, visualizations, and much more. https://docs.microsoft.com/en-us/power-bi/guided-learning/

Create a data model in Excel
Follow the steps to integrate table from multiple tables. https://support.office.com/en-us/article/Create-a-Data-Model-in-Excel-87E7A54C-87DC-488E-9410-5C75DBCB0F7B

Data cleaning

Top 10 ways to clean your data in Excel

Power Query
Power Query, (also known as Get & Transform) provides an intuitive and consistent experience for discovering, combining, and refining data across a wide variety of sources in Excel and Power BI. https://support.office.com/en-us/article/get-transform-in-excel-881c63c6-37c5-4ca2-b616-59e18d75b4de

Data exploration

edX Course
This free 6-week training course provides advanced training on analyzing and visualization data in Excel. https://www.edx.org/course/analyzing-%20visualizing-data-excel-2
Storyboard and data visualization

From Data to Viz
An excellent resource to help you choose the best graph or visual for your data.
https://www.data-to-viz.com/

Data visualization catalog
This handy site will help you select a chart based on your communication needs.
https://datavizcatalogue.com/search.html

Gestalt Principles
Understand how humans typically see objects to design more engaging visualizations.
https://www.interaction-design.org/literature/topics/gestalt-principles

Gain efficiency with report themes
Creating predefined report themes and color palette in Power BI can help you reduce the cycle time of creating and refining data visualizations.
https://docs.microsoft.com/en-us/power-bi/desktop-report-themes

The Functional Art
Alberto Cairo’s blog on visualization, infographics, and data journalism.
http://www.thefunctionalart.com

Steve Haroz’s research
Steve studies how the human brain perceives and understands visually displayed information.
http://steveharoz.com/research/

Cultural blind spots
Read up on cultural blind spots in UX.
https://medium.com/nasdaq-design/cultural-blind-spots-in-ux-840353aa3cdd

Data visualization refinement

The Color Oracle
Use this color-blindness simulator for all platforms.
http://colororacle.org

Color Palette
ColourLovers is a creative community where people from around the world create and share colors, palettes and patterns.
https://www.colourlovers.com

Iconography
Over one million icons, free for use with attribution.
https://www.flaticon.com

Fonts free for commercial use
https://www.fontsquirrel.com

Publishing and sharing

Publish to web with Power BI
Follow detailed instructions about how to publish your report to the web.
https://docs.microsoft.com/en-us/power-bi/service-publish-to-web

Optimize your report
Use this handy tool to make sure your report fits to the iframe and page size.
https://www.lukaszpawlowski+ms.github.io/Optimize-Publish-To-Web
Understanding and preventing bias

There are many different biases that can affect the impartiality of a story at every stage, from the data gathering to the modeling to the visualization. It is our responsibility to be aware of and avoid these biases.

Confirmation bias

The purpose of data analysis is to explore the data you’ve gathered, prove or disprove your hypothesis and potentially find new insights you haven’t yet imagined. Confirmation bias is a departure from this spirit, and instead seeks information that only supports the hypothesis. In gathering data, be sure to find all data necessary and available to fully represent the reality of your situation and be careful not to avoid data you deem irrelevant, when in truth it might disprove your hypothesis.

Availability bias

Closely related to confirmation bias, availability bias refers to only sourcing the data that’s readily available to you. Be prepared to dig for data, work with partners, and be tenacious in pursuit of the truth.

Selection or sampling bias

This bias refers to the data being collected from a sample of the population that is not representative of the entire population. For example, if your story idea is to show how insurance premiums for drivers have increased over time, but your sample is limited to drivers between 16 and 25 years of age, your data would suffer from sampling bias.

Cherry-picking

In cherry-picking, the question is phrased in a way to get the preferred answer. This is different from confirmation bias, where the answers have already been gathered, but only the answers that support the hypothesis are retained.

Cultural bias

This bias refers to the impulse to use familiar phrases, idioms, colors and graphics, without first considering that members of your audience may be of different cultures, who can sometimes have vastly different interpretations of these elements.

Biased language

Already extremely familiar to traditional journalists, biased language refers to using language that takes sides in politics, using politically charged words, or otherwise degrading the principle of impartiality.

Issue bias

In data journalism, issue bias refers to manipulation of how the data was surveyed or gathered, or directly tampering the data or analysis in a way that intentionally shifts debates or perspectives in a specific direction in a non-transparent way.
Technical bias

Meet your audience where they are. Put yourself into their shoes and make your work as approachable as possible, as opposed to using the most complex or high-tech visualizations because they’re interesting to you. With data journalism, the opportunity exists to communicate complex insights to wide audiences. However, we must be careful that the data visualizations are approachable to a wide audience and easily understood, and do not favor the more tech-fluent sections of society.

Biased data narrative

In this bias, the narrative of a story is formulated by choosing which data to visualize or using particular visualizations in a manner that pushes a specific issue or agenda. To help prevent a biased data narrative, share your methodology and seek feedback from external users and your audience.

Replication bias

Typically, replication refers to the ability to reproduce the results of the analysis using other data samples from the population the initial sample was drawn from. Replication ensures the validity and reliability of the data analysis.

The Hawthorne Effect

This bias is most practically applied in data journalism if you are collecting data yourself or conducting surveys yourself. The Hawthorne Effect is the phenomena that people generally change their behavior when they know they are being watched or observed. To avoid it, researchers often begin their observations and only begin recording data once a period of time has elapsed and it is believed that the subjects’ behavior has returned to normal.

Miller’s Law

A person’s short-term memory can only store five to nine units of information at a time; this, for instance, is why telephone numbers have been limited to seven digits. Thus, it is best to automate the collection of data wherever possible and design your data visualizations to present no more than five to nine insights at a time.
Local and regional data sources

Each organization will have a list of data sources relevant to its audiences. Please use this section to fill out sources relevant to your reporting.

<table>
<thead>
<tr>
<th>Data Source</th>
<th>URL</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Seattle Open Data Portal</td>
<td>https://data.seattle.gov/</td>
<td>Portal where data generated by the city is made public</td>
</tr>
</tbody>
</table>

Credits
Many subject-matter experts contributed to the content in this document:

Miguel Angel Myers Macias, program manager, Microsoft / Steve Doig, professor, Cronkite School of Journalism, ASU / Brandon Germer, decision science practice lead, Revel Consulting / Sheldon Lee, regional finance director, KING 5 / Taylor Mirfendereski, reporter, KING 5 / Lukasz Pawlowski, senior program manager, data journalism, Microsoft / Corina Radovanovich, senior communications manager, data journalism, Microsoft / Ben Rudolph, director, Microsoft / Kelly Sinclair, designer, Enlighten Designs / Russ Walker, assistant news director, KING 5 / Jake Whittenberg, anchor and reporter, KING 5.